Pre-requisites: Biol 420

Recommended: MBIOS 301 or Crop SCI 444

Credits: 3

Schedule: Tuesday/Thursday – 4:15-5:30 PM, Johnson Hall 204

Instructor: Amit Dhingra, Associate Professor

Office: Johnson 155

Office hours: By appointment

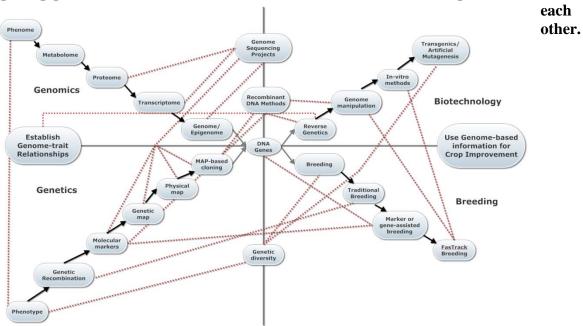
Contact information: adhingra@wsu.edu; 509-335-3625

Teaching Assistant: Ryan Christian; ryan_christian@wsu.edu; 509-335-6586

Overview

The goal of **Hort 480 Plant Genomics and Biotechnology** is to develop an understanding of the genetics, genomics, and biotechnology of plants, and the ways in which this information can be utilized for crop improvement. This will be accomplished through a study of plant genomics and biotechnology, along with the investigation of current methods, approaches and techniques. The course will be comprised of class lectures, invited presentations, reading materials and assignments and class presentations and group discussions.

Student Learning Objectives/Goals


Objective 1: Understand central dogma, recombinant DNA, genetic diversity identification, methods to capture genome sequences

Objective 2: Establish gene-trait relationships via genetic and genomics approaches

Objective 3: Integrate the information from objective 1 and 2 in breeding and biotechnology approaches for efficient crop improvement

Objective 4: Become familiar with public perception issues regarding biotechnology and approaches for effective science communication.

The goal of this course is to provide students with the tools necessary to research, write about, and discuss advanced concepts in plant genetics, genomics and biotechnology. This concept map provides an overview of the course and how different concepts are related to

Topics to be covered are provided in the table below. This is a draft schedule which is subject to change without prior notice based on time required to cover each topic or availability of some key invited outside speakers

SECTION 1	Topic	Keywords	
Tues	Introduction		
Thurs	Fundamentals of molecular biology: The Central Dogma	Central dogma, replication, gene regulation, epigenetics	
Tues	Recombinant DNA: Design and Manipulation of DNA	Restriction digestion, plasmid replication, plasmid design, transformation vectors, nuclear vs chloroplast transformation, protein targeting	
Thurs	Genetic Diversity - fundamentals and assessment - marker-based techniques	Markers, Analog and digital markers, AFLP, TRAP, SNP, SNParray, Microarray	
Tues	DNA sequencing: The technology	Sanger sequencing, Illumina sequencing, pyrosequencing, bioinformatics	
Thurs	DNA sequencing: The data	Polymorphisms, mutation, evolution, genomes, gene discovery, genome arrangement, phylogeny, polymorphisms, genomes, gene discovery, transposons, viral DNA	
Tues	Review of topics covered till date	N/A	
Thurs	TEST	N/A	
SECTION 2			
Tues	Identifying traits of interest and Forward Genetics	Phenotyping, Traits, invasive/destructive sampling	
Thurs	DNA Recombination and Inheritance of Traits	Recombination, inheritance, ploidy, self-pollination, cross-pollination	
Tues	Genome Cartography: Markers and Genetic Maps	Markers, Genetic Maps, QTL analysis, Association mapping, Pedigree mapping	
Thurs	Mapping traits to genes	Trait mapping, Forward Genetics	
Tues	High-throughput Phenotyping: Using	Non-invasive sampling, automation, engineering, optics, real-time measurement	

	chlorophyll to rapidly assess		
	plant health		
Thurs	Mining the data: Inferring	Transcriptome, metabolome, Proteome,	
	phenotypes Cose studies of more board	bioinformatics	
Tues	Case studies of marker-based	AFLP, TRAP, SNP, chloroplast sequencing,	
	genetic analysis	pedigree, mapping transcriptomics, gene discovery, expression	
Thurs	Case studies of data mining	clusters, gene-trait association	
Tues	Review of topics covered so far	N/A	
Thurs	TEST of topics covered so far from the start of the class	N/A	
SECTION 3			
Tues	Traditional breeding: using the existing diversity	Traditional, marker assisted, fastrack breeding	
Thurs	Novel approaches to crop	Mutation breeding, chromosomal mutation,	
	improvement: building genetic diversity	ploidy mutation, TILLING, reverse genetics in model systems, 'seedless' fruit	
		In vitro, tissue culture, plant hormones, somatic	
Tues	In vitro plant culture	embryogenesis, organogenesis	
Thurs	Techniques in genetic	Agrobacterium, Gene Gun, Protoplasts, Floral	
	engineering: tools of the	dip, plasmids, selectable markers	
	trade The New Frontier of		
Tues	Genome Editing - What's the	TALENs, Zinc-finger Endonucleases, CRISPR-	
Tues	deal with CRISPR-Cas9?	Cas9	
	Case Studies in currently	Bt, Roundup-Ready, Rainbow Papaya, Mildew-	
Thurs	deployed technologies:	Resistant Squash, Flavr-Savr, Terminator	
	Producer-based appeal	technology	
	Case Studies in Emerging	Autic Apple Non huovyning mysterion	
Tues	technologies: Consumer- based appeal and regional	Artic Apple, Non-browning mushroom, American Chestnut, Golden Rice, Crispr-Cas9	
	needs	American Chestilut, Golden Rice, Crispi-Cass	
	110045	Climate change, emerging plant disease, Coffee	
Thurs	Genetic engineering as a	rust, wheat rusts (UG-99), Citrus	
Thurs	response to new threats	Greening/Huanglongbing, Fusarium wilt, downy	
		mildew	
Tues	THANKSGIVING BREAK		
Thurs	THANKSGIVING BREAK		
Tues	Review session		
Thurs	Comprehensive Exam -	N/A	
	covers all topics Communication in Genetic	Ethics, GMO, GE, DNA, Public Perception,	
Tues	Engineering: Pros and Cons	GRAS, Regulation	
L	Linginicorning, i 105 and Cons	01010, 100501011011	

	of the technology	
Thurs	Addressing the myths of GE	Ethics, GMO, GE, DNA, Public Perception,
		GRAS, Regulation

Grading Policy:

A 94-100 B+ 87-89 C+ 77-79 D+ 67-69 F < 60 A- 90-93 B 84-86 C 74-76 D 60-66 B- 80-83 C- 70-73

	Weight
Attendance	10%
Student Group Discussion	25%
Review Tests (2)	40%
Comprehensive Review Test	25%
Total	100%
Extra credit – paper review (off campus) or attending Academic Showcase (Pullman)	10%

Attendance policy: All students are expected to attend and participate in all meetings of the courses in which they are enrolled; any absence is incurred at the student's own risk and will impact your grade. For Hort 480 a total of **4 absences are excused** after which each absence will result in 2% grade loss of your attendance grade. This is meant to apply to unforeseen illness, traveling for academic meetings, collegiate sports, general malaise, bad hair days, etc. Please plan accordingly and do not expect special treatment except perhaps for the most unusual of circumstances. Extremely unusual. Examples include, and are probably limited to: extended alien abduction (with video proof) and the Tuesday following the Apple Cup*. Refer to Academic Regulation section 71-73 for additional information.

Students with Disabilities: Reasonable accommodations are available for students with a documented disability. If you have a disability and need accommodations to fully participate in this class, please either visit or call the Access Center (Washington Building 217; 509-335-3417) to schedule an appointment with an Access Advisor. All accommodations MUST be approved through the Access Center. For more information contact a Disability Specialist on your home campus:

Pullman or WSU Online: 509-335-3417 http://accesscenter.wsu.edu, Access.Center@wsu.edu

Spokane: http://spokane.wsu.edu/students/current/studentaffairs/disability/

Tri-Cities: http://www.tricity.wsu.edu/disability/

Vancouver: 360-546-9138 http://studentaffairs.vancouver.wsu.edu/student-resource-

center/disability-services

WSU Academic Integrity: Academic integrity is the cornerstone of the university. You assume full responsibility for the content and integrity of the academic work you submit. You

^{*}only applicable if the Cougs are victorious.

may collaborate with classmates on assignments, with the instructor's permission. However the guiding principle of academic integrity shall be that your submitted work, examinations, reports, and projects must be your own work. Any student who violates the University's standard of conduct relating to academic integrity will be referred to the Office of Student Conduct and may fail the assignment or the course. You can learn more about Academic Integrity on your campus using the URL listed in the Academic Regulations section to http://conduct.wsu.edu/academic-integrity-policies-and-resources. Please use these resources to ensure that you don't inadvertently violate WSU's standard of conduct.

WSU Safety: Pullman: "Washington State University is committed to enhancing the safety of the students, faculty, staff, and visitors. It is highly recommended that you review the Campus Safety Plan (http://safetyplan.wsu.edu/) and visit the Office of Emergency Management web site (http://oem.wsu.edu/) for a comprehensive listing of university policies, procedures, statistics, and information related to campus safety, emergency management, and the health and welfare of the campus community."

Tri-Cities: "In order to receive notification regarding campus emergencies (including campus closures), all faculty, staff, and students register their emergency contact information for the Crisis Communication System (CCS) through Zzusis at http://zzusis.wsu.edu. Click "Update Now!" under "Tri-Cities Emergency Info" to register for notification by text message, e-mail, telephone, or any combination of the three. Providing multiple contact methods will help ensure you receive notifications in a timely manner, and your information will NOT be used for any other purpose. Messages regarding campus emergencies will also be distributed through local media. Please also review the Campus Safety Plan, which contains a listing of emergency contacts, and university policies, procedures, statistics, and information relating to campus safety and the health and welfare of the campus community. The Campus Safety Plan can be found at http://www.tricity.wsu.edu/safetyplan/."